Mesh Generation for Modeling and Simulation of Carbon Sequestration Processes

M. S. Ebeida

Sandia National Laboratories, Department of Applied Math and Applications

04/01/11
Overview

1. Motivation
2. Objectives
3. Computational Approach
4. Maximal Poisson Sampling
5. A linear CDT algorithm
6. Constraint Voronoi Meshing
Motivation

• Generating tessellations for simulation of propagating cracks in disordered media (geo materials, concrete, polycrystalline materials ... etc.)

• Probability of seeing a straight crack propagate through a random field is zero.
Eliminating mesh induced crack bias

- If cracks can grow only at element edges, then need to eliminate any directional bias in crack growth.
- Structured grids can result in strong mesh induced bias (nonobjective).
- need to use ‘random’ discretizations using Voronoi mesh.
- statistically isotropic tessellation.
Objectives

- A bias-free point cloud to minimize the effect of the final mesh on a crack propagation.
- A maximal distribution so the domain is saturated with the generated points.
- A minimum distance between the generated points.
- The ability to handle non-convex domains with multiple fractures, and/or holes.
- Running time should be linear in the number of generated points.
- Utilized memory should be as small as possible.
- Can be easily implemented in parallel.
- The output mesh should be conforming.
Computational Approach

- Solve the maximal Poisson-disk sampling problem.
- Extend that solution to non-convex domains.
- Generate the edge connectivity based on a new Constrained Delaunay triangulation method.
- Construct the corresponding Constrained Voronoi Diagram by retrieving the dual grid of a Delaunay mesh.
- Adjust the tessellation along internal boundaries to generate a conforming mesh.
- The proposed algorithm should be extended to 3D easily.
- The proposed algorithm should be extended to the non-uniform case easily.
Three conditions to be satisfied:

- Each point is a center of a disk, with radius r, that contains no other points:

 $$\forall x_i \in x_j \in X, x_i \neq x_j : ||x_i - x_j|| \geq r$$

- The point distribution should be bias-free:

 $$\forall x_i \in X, \forall \Omega \subset D : P(x_i \in \Omega) = \int_\Omega d\omega$$

- Termination is achieved when the domain is completely saturated:

 $$\forall x \in D, \exists x_i \in X : ||x - x_i|| < r$$
Challenges

- An efficient method to retrieve conflicts.
- Filling the small gaps between the disks.
- Detection of the termination condition.
The maximal Poisson-disk sampling

Our solution

- Utilizing a cartesian background grid
- Dynamic linear representation of the voids in the domain.
Voronoi Meshing for Simulation of Propagating Cracks

Motivation
Objectives
Computational Approach
MPS
CDT
CVM

The maximal Poisson-disk sampling: Results
The maximal Poisson-disk sampling: Results

Motivation
Objectives
Computational Approach
MPS
CDT
CVM

Voronoi Meshing for Simulation of Propagating Cracks

M. S. Ebeida
Voronoi Meshing for Simulation of Propagating Cracks

M. S. Ebeida

Motivation

Objectives

Computational Approach

MPS

CDT

CVM

The maximal Poisson-disk sampling: Results
Our solution

- A maximal Poisson-disk sampling results in an upper bound for the edge length in the associated Delaunay tessellation.
- The background grid is utilized to retrieve possible neighbors which are filtered locally based on edge constraints and the Delaunay principal.
- This results in a linear algorithm capable of processing 250,000 points/second.
- The speed of the implementation is not sensitive to the shape of the domain or the number of the edge constraints.
- Angle bounds are $30^\circ - 120^\circ$ while edge length bounds are $r - 2r$.
A linear CDT algorithm
Our linear CDT algorithm: Results
Our linear CDT algorithm: Results
Voronoi Meshing for Simulation of Propagating Cracks

M. S. Ebeida

Motivation

Objectives

Computational Approach

MPS

CDT

CVM

Our linear CDT algorithm: Results
Our solution

- After retrieving the constraint edge connectivity, the Voronoi mesh is constructed by retrieving the dual grid.
- A circum-center that results in a non-conforming Voronoi mesh adjacent to internal crack is repositioned to the mid-point of its nearest edge.
- Short edges are collapsed on the fly to ensure a minimum bound for the edges in the Final Voronoi mesh.
Constraint Voronoi Meshing: Results
Constraint Voronoi Meshing: Results

Voronoi Meshing for Simulation of Propagating Cracks

M. S. Ebeida

Motivation
Objectives
Computational Approach
MPS
CDT
CVM

[Images of Voronoi mesh patterns]
Constraint Voronoi Meshing: Results

Motivation
Objectives
Computational Approach
MPS
CDT
CVM
Voronoi Meshing for Simulation of Propagating Cracks

M. S. Ebeida

Motivation
Objectives
Computational Approach
MPS
CDT
CVM

Thank you!