Engineering Analysis "ENG180"

Algebra
"Operations on Numbers"

Geometry
"Shapes"

Mathematics

Approximation Sets

Calculus
"Relations"

Analytical Geometry

* Mathematics \Rightarrow logic
* Science \Rightarrow laws of nature
* Engineering \Rightarrow Analysis & Design of a product or a process
* Technology \Rightarrow Manufacturing
1. Algebra:
 - Operations on numbers

 Numbers
 - Integers: -4, 3, 12
 - Rational: \(\frac{3}{2}, \frac{4}{3}, \frac{5}{7}\)
 - Irrational: \(\pi, e, \sqrt{2}\)
 - Complex: \(2 + 3i\)

 - Complex numbers are 2D but much powerful
 than vectors "for example vectors have no
 inverse". But vectors can be 3D or more!

2. Geometry:
 - Deals with shapes

 Shapes
 - Curves
 - Surfaces

 - Euler formula:
 \[V + F = E + 2\]

 - No. of Points
 - No. of Faces
 - No. of Edges

 \[V = 5\]
 \[F = 5\]
 \[E = 8\]
Prove that
\[c^2 = a^2 + b^2 \]

3. Calculus:

- Relations (functions) between variables, \(y = f(x) \)

- Pythagoras proved the fundamental theorem of geometry

- Gauss proved the fundamental theorem of Algebra

- Leibnitz proved the fundamental theorem of Calculus.

\(f \) Gauss theorem, Stokes theorem, Reynolds transport theorem, \(f \)